tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors.

نویسندگان

  • Stéphane Berghmans
  • Ryan D Murphey
  • Erno Wienholds
  • Donna Neuberg
  • Jeffery L Kutok
  • Christopher D M Fletcher
  • John P Morris
  • Ting Xi Liu
  • Stefan Schulte-Merker
  • John P Kanki
  • Ronald Plasterk
  • Leonard I Zon
  • A Thomas Look
چکیده

TP53 is the most frequently mutated tumor suppressor gene in human cancer, with nearly 50% of all tumors exhibiting a loss-of-function mutation. To further elucidate the genetic pathways involving TP53 and cancer, we have exploited the zebrafish, a powerful vertebrate model system that is amenable to whole-genome forward-genetic analysis and synthetic-lethal screens. Zebrafish lines harboring missense mutations in the tp53 DNA-binding domain were identified by using a target-selected mutagenesis strategy. Homozygous mutant fish from two of these lines were viable and exhibited mutations similar to those found in human cancers (tp53(N168K) and tp53(M214K)). Although homozygous tp53(N168K) mutants were temperature-sensitive and suppressed radiation-induced apoptosis only at 37 degrees C, cells in the tp53(M214K) embryos failed to undergo apoptosis in response to gamma radiation at both 28 and 37 degrees C. Unlike wild-type control embryos, irradiated tp53(M214K) embryos also failed to up-regulate p21 and did not arrest at the G(1)/S checkpoint. Beginning at 8.5 months of age, 28% of tp53(M214K) mutant fish developed malignant peripheral nerve sheath tumors. In addition to providing a model for studying the molecular pathogenic pathways of malignant peripheral nerve sheath tumors, these mutant zebrafish lines provide a unique platform for modifier screens to identify genetic mutations or small molecules that affect tp53-related pathways, including apoptosis, cell-cycle delay, and tumor suppression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

brca2 and tp53 Collaborate in Tumorigenesis in Zebrafish

Germline mutations in the tumor suppressor genes BRCA2 and TP53 significantly influence human cancer risk, and cancers from humans who inherit one mutant allele for BRCA2 or TP53 often display loss of the wildtype allele. In addition, BRCA2-associated cancers often exhibit mutations in TP53. To determine the relationship between germline heterozygous mutation (haploinsufficiency) and somatic lo...

متن کامل

Genetic inhibition of autophagy promotes p53 loss-of-heterozygosity and tumorigenesis

Autophagy is an evolutionarily conserved lysosomal degradation pathway that plays an essential role in enabling eukaryotic organisms to adapt to nutrient deprivation and other forms of environmental stress. In metazoan organisms, autophagy is essential for differentiation and normal development; however, whether the autophagy pathway promotes or inhibits tumorigenesis is controversial, and the ...

متن کامل

Intrathoracic Malignant Peripheral Nerve Sheath Tumor: Histopathological and Immunohistochemical Features

Malignant peripheral nerve sheath tumor (MPNST) is a rare nerve sheath tumor derived from Schwann cells or pleuripotent cells of neural crest. Neurogenic tumors make about 10-20% of all mediastinal tumors. Incidence of MPNST is 0.001% in general population and 0.16% in patients with neurofibromatosis I (NF I). We report a case of 60 year female presenting with progressive cough and breathlessne...

متن کامل

Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations.

Zebrafish carrying heterozygous mutations for 17 different ribosomal protein (rp) genes are prone to developing malignant peripheral nerve sheath tumors (MPNSTs), a tumor type that is seldom seen in laboratory strains of zebrafish. Interestingly, the same rare tumor type arises in zebrafish that are homozygous for a loss-of-function point mutation in the tumor suppressor gene p53. For these rea...

متن کامل

Zebrafish with mutations in mismatch repair genes develop neurofibromas and other tumors.

Defective mismatch repair (MMR) in humans causes hereditary nonpolyposis colorectal cancer. This genetic predisposition to colon cancer is linked to heterozygous familial mutations, and loss-of-heterozygosity is necessary for tumor development. In contrast, the rare cases with biallelic MMR mutations are juvenile patients with brain tumors, skin neurofibromas, and café-au-lait spots, resembling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 2  شماره 

صفحات  -

تاریخ انتشار 2005